- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Tadiparthi, Vaishnav (3)
-
Chalaki, Behdad (2)
-
Mahjoub, Hossein Nourkhiz (2)
-
Moradi-Pari, Ehsan (2)
-
Al-Nadawi, Yasir K (1)
-
Araki, Hidekazu (1)
-
Bhattacharya, Raktim (1)
-
Cassandras, Christos G (1)
-
Chavez_Armijos, Andres S (1)
-
Das, Niladri (1)
-
Deshpande, Vedang (1)
-
D’Sa, Jovin (1)
-
Le, Viet-Anh (1)
-
Li, Anni (1)
-
Malikopoulos, Andreas A (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Chavez_Armijos, Andres S; Li, Anni; Cassandras, Christos G; Al-Nadawi, Yasir K; Araki, Hidekazu; Chalaki, Behdad; Moradi-Pari, Ehsan; Mahjoub, Hossein Nourkhiz; Tadiparthi, Vaishnav (, Automatica)
-
Deshpande, Vedang; Das, Niladri; Tadiparthi, Vaishnav; Bhattacharya, Raktim (, SciTech 2020 Forum)null (Ed.)We discuss a novel method to train a neural network from noisy data, using Optimal Transport based filtering. We show a comparative study of this methodology with three other filters: the Extended Kalman filter, the Ensemble Kalman filter, and the Unscented Kalman filter, that can also be used for the purpose of training a neural network. We empirically establish that Optimal Transport based filter performs better than the other three filters with respect to root mean square error measure, for non-Gaussian noise in the output. We demonstrate the efficacy of utilizing the Optimal Transport based filtering for neural network training in the context of predicting Mackey-Glass chaotic time series data.more » « less
An official website of the United States government
